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Abstract Natural evolution gives the impression of leading to an
open-ended process of increasing diversity and complexity. If our
goal is to produce such open-endedness artificially, this suggests an
approach driven by evolutionary metaphor. On the other hand,
techniques from machine learning and artificial intelligence are often
considered too narrow to provide the sort of exploratory dynamics
associated with evolution. In this article, we hope to bridge that gap
by reviewing common barriers to open-endedness in the evolution-
inspired approach and how they are dealt with in the evolutionary
case—collapse of diversity, saturation of complexity, and failure to
form new kinds of individuality. We then show how these problems
map onto similar ones in the machine learning approach, and
discuss how the same insights and solutions that alleviated those
barriers in evolutionary approaches can be ported over. At the same
time, the form these issues take in the machine learning formulation
suggests new ways to analyze and resolve barriers to open-endedness.
Ultimately, we hope to inspire researchers to be able to interchangeably
use evolutionary and gradient-descent-based machine learning
methods to approach the design and creation of open-ended systems.

1 Introduction

The problem of how to achieve open-endedness in artificial systems is a central question of ALife.
This is formulated for example as the question of how living systems can generate novel infor-
mation, as well as how to demonstrate things such as major transitions or the emergence of cog-
nition in artificial systems [7]. Despite biological evolution demonstrating the production of a wide
diversity of forms across a wide range of scales, modes of interaction, and levels of organization,
the artificial systems constructed in mimicry of that process have a frequent tendency to exhibit
early saturation—rather than producing a diverse array of organisms with complex behaviors and
forms, they find a small set of organisms that, while they may have some interesting interactions,
do not give rise to any further innovations or variations from that point onwards. These tenden-
cies are mirrored in isolated examples from biological evolution, just not the process as a whole,
and in those isolated cases it is possible to understand what factors are leading to a limit in the
open-endedness of the system, and hence to develop methods to overcome those limits [20].
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However, there still exists a fundamental barrier, in that the open-ended systems we produce still
do not seem to be capable of indefinitely surprising us, leading to a kind of trivial open-endedness.

In this article, we would like to look at these limits from the parallel perspectives of evolutionary
algorithms and deep neural networks trained via backpropagation. Neural networks have a reputa-
tion for being less open-ended than evolutionary methods, but we argue that this is mostly due to a
difference in the problems that the machine learning community has organized around rather than
something fundamental to the nature of neural networks or backpropagation. Specifically, the stan-
dard of evidence in many machine learning venues is to produce a model that performs better ac-
cording to a fixed performance metric on a fixed task, which tends to produce a bias against
methods that produce a diversity of solutions or that find ways to change the rules of the game.
However, recent work with the goal of optimizing for subjective qualities (such as producing photo-
realistic imagery) has led to exploration of multi-network systems that have more of a coevolutionary
character. These include generative adversarial networks (GANs) [29] as well as modern reinforce-
ment learning systems such as AlphaGo [63]. We argue that these methods are beginning to achieve
some aspects of open-endedness.

There are two crucial issues that are shared between these neural network methods and simula-
tions of open-ended evolution. These are diversity and scaling. Specifically, once the fixed objective
function is removed, it becomes crucial for machine learning algorithms to maintain a diversity of
solutions, in order to maintain a memory of solutions or behaviors that were discovered previously.
This diversity may occur at the level of outputs from a single network rather than an explicit pop-
ulation, but we argue that the issues involved are nevertheless quite similar. This suggests that ideas
about diversity maintenance in genetic algorithms may also be applicable to the training of neural
networks, and we outline one way in which this could be achieved. Secondly, if our aim is to increase
complexity, then we must understand how the pressures to increase or decrease complexity scale
with the amount of complexity already present in our system. If this scaling is negative, then the
complexity will eventually saturate, regardless of how high its initial pressure to increase. We review
some recent results suggesting that the scaling laws for large neural networks may be amenable to
accumulating information in an open-ended way, with current methods apparently being limited by
computing time and the amount of training data, rather than by inherent saturation in the algorithms.
This suggests that further study of scaling in neural networks could give new insights into the kinds
of systems that are capable of nontrivial open-endedness.

We discuss three problems in particular that interfere with open-endedness both in artificial and
in real biological systems. In the context of [20], these are “novel organisms stop appearing,”
“organismal complexity stops increasing,” and “Shifts in individuality are impossible.” The first
two of these problems, the tendency of diversity and complexity both to saturate, have been solved
in a number of ALife systems, although the solution methods generally constrain the system design.
The third problem, the tendency for open-endedness to take forms that are largely “more of the
same,” remains a significant one. While deep neural networks in standard applications tend not to
produce a diversity of outcomes, we will talk about how this can be achieved and how the machine
learning community is exploring this in the form of the phenomenon of mode collapse [15, 49, 71].
We will also argue that stochastic gradient descent by its nature automatically overcomes the bias
towards favoring simpler solutions that generally leads to saturation of complexity. Finally, we will
discuss how the tendency of the currently achieved forms of open-endedness to still seem trivial can
be linked to the ability of cognitive systems to abstract, and make an argument for how using neural
networks as a base may allow us to take advantage of the ability to abstract to make steps towards a
more qualitatively satisfying open-endedness.

2 Diversity

One sense of open-endedness comes from the observation that biological evolution seems to pro-
duce an endless diversity of form [6]. In this context, open-endedness just implies that there is
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always another new form that will be discovered if the system continues to proceed. Yet even this
kind of open-endedness can be difficult to produce in artificial systems driven by evolutionary
algorithms. The problem is that optimization tends to drive systems to decrease their diversity when
in the vicinity of an optimum. Given a set of suboptimal points (genomes or parameters) associated
with the same local optimum, those points become compressed together when moved towards the
optimum.

With regard to other senses of open-endedness (such as becoming increasingly complex with-
out bound, or never failing to be surprising), a failure to preserve diversity can interfere with the
possibility of those other types. A system that can only really maintain one dominant type of be-
havior or form at a time loses memory of the other behaviors or forms that have been previously
discovered. While the system may in the best case manage to move between these attractors, it
cannot maintain a long-term preference for new attractors over old ones, and so is not driven to
explore.

In evolutionary systems, the tendency for diversity to collapse takes the form of competitive
exclusion [14, 28, 34], in which population dynamics in the relative exponential growth regime will
drive all but the highest-fitness species to (relative) extinction. Even in the presence of mutation,
systems with an Eigen error threshold [9] have a phase transition between a regime in which selec-
tion wins out over mutation and the entire population is clustered around a local optimum in the
genetic space, and a regime in which mutation ends up erasing the evolutionary history completely—
essentially, preventing the population from successively accumulating information about the envi-
ronment via selection. Additionally, even in coevolutionary cases in which the evolutionarily stable
strategy can correspond to a heterogeneous population (a mixed strategy), other considerations, such
as finite-population-size effects or the distributional details of how populations of one generation
map to the next, may limit the actual sustainable diversity of the system [23]. Detailed aspects of the
dynamics can lead to a failure to achieve even theoretically optimal and stable open-ended evolu-
tionary outcomes [44].

In the next two subsections, we outline how these notions of diversity can map to the training of
machine learning models. We first introduce the notion of a generative modeling task, in which a
network must maintain a diversity of possible outputs rather than learning a single output for a
given input, and then we show how a version of Lehman and Stanleyʼs [41] minimal criterion
novelty search algorithm can be applied to train a network to perform such a task. The purpose
of this is to show how concepts can be mapped between the two fields, rather than to present
major results. In the remainder of the section, we discuss how these ideas apply to generative
adversarial networks (GANs), in which two co-trained networks behave in many ways like two
coevolving populations.

2.1 Generative Modeling Tasks
In machine learning, given that often the focus is on producing a single trained model rather than a
population of models, there are various ways one could think of the analogue of “diversity.” One
possibility is to think of the set of possible outputs of a model given a particular fixed input as
representative of a population [51]. In this case, classic instances of supervised learning—that is
to say, optimizing the average of a pointwise scalar objective function over the data set—necessarily
suffer from diversity collapse at their global optimum. Specifically, we can consider a model trained
to minimize some function L = �i f ( yi, ŷi (xi)) where yi is a target value, ŷi (xi) is the output of the
model given some associated input xi , and the sum is over the data set. We can rewrite this:

L ¼
Z

dxdydŷq x; yð Þq ŷjxð Þf y; ŷð Þ (1)

where the q functions are the empirical distributions associated with the data set (q(x, y)) and the
corresponding possible outputs of the model (q( ŷ|x)). If we consider each case of x on its own, we
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can rewrite q(x, y) = q(x|y)q( y) and place the y-dependent terms into an inner integral. This allows
us to obtain a function

~f ŷð Þ ¼
Z

dyq yð Þf y; ŷð Þ (2)

such that

L ¼
Z

dxdŷq xð Þq ŷjxð Þ~f ŷð Þ: (3)

In essence this says that, given the distribution of possible true values y for a particular x, we can
replace the distribution of contributions to the overall objective function made by those y-values with a
single characteristic value that averages over the data set. Assuming the model is sufficiently flexible to
do so, the optimal solution for this that minimizes L is always for q( ŷ|x) to be a d-function around
some particular y*(x) associated with each unique input.

While this may be true for the usual type of supervised learning tasks, there is a family of tasks
where the goal is not to output a specific thing in response to a particular input, but rather to be
able to learn to generate samples from a particular associated distribution. These are referred to as
generative modeling tasks, and in such cases the objectives are constructed in different ways so as
to be able to take into account the distribution of outputs (and as a result, to be able to converge
to an optimal and yet diverse set of output behaviors). This can be done by learning a transfor-
mation from a starting distribution that is easy to sample from (such as a high-dimensional Gaussian)
into the target distribution, by learning to estimate the likelihood of a given point, or by explicitly
outputting summary statistics of a distribution model (e.g., in the case of a Gaussian mixture
model, this corresponds to the means, covariance matrices, and relative weights). It is also pos-
sible to make autoregressive generative models that iteratively sample one dimension at a time
from the target space, conditioned on the dimensions that have been generated so far. In each of
these cases, the actual stated objective function cannot be generally satisfied by a non-diverse
output.

The simplest example of such constructions is when a model is trained to explicitly output the
components of a probability distribution (Figure 1). In multiclass classification, this is done in prac-
tice by placing a softmax activation function after the final output of the rest of the model. The
softmax function maps its input vector →x to a vector →p of positive values pi that are guaranteed

Figure 1. Left: a model that generates a single (sampled) prediction given a particular context. Right: a model that
parameterizes a probability distribution over possible predictions given a particular context.
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to sum to unity, thereby allowing the arbitrary vector →x of input values xi to be interpreted as
parameterizing a probability distribution →p. Formally the components of →p are defined via

pi ≔ Softmax →xð Þi ¼ exp xið ÞP
j exp xj

� � : (4)

Then, the model is trained to minimize the categorical cross-entropy (CCE) between the output
probability distribution →p and the true probability distribution →y :

CCE
→

p;
→

yð Þ ¼ −E
X
i

yi log pi

" #
(5)

where here the sum is over the different possible class labels. The CCE is a function that measures
the divergence between two distributions (here →p and →y ), and is minimum when those distributions
are equivalent. Since the true probability distribution is generally only estimated from data, in effect
for a given set of observations this becomes

L ¼ −
1
N

XN
j

log p yj jxj
� �

(6)

where now the sum is over individual instances yj , xj from the data set. While this is still a pointwise
comparison between samples, the output does not consist of samples, but rather describes the com-
ponents of a probability distribution. As a result, while the model would optimally converge to a
single particular output given a particular input, that output can still represent something with non-
zero entropy, and the corresponding distribution →p can be sampled from.

This approach can be broadened by thinking of the components of →p as simply a way to pa-
rameterize some probability distribution with a known analytic form (in this case, a piecewise con-
stant function). Other distributions can be used instead, as in the case of mixture density networks [10],
which have the model output the parameters for a set of multiple Gaussian distributions.

The general use case for this sort of approach is when thereʼs a reasonable guess for the family of
distributions that will model the data well, or when the outputs are in a sufficiently low-dimensional
space that the distribution can be discretized over a grid.

2.2 Minimum-over-Set Losses
Much like the minimal criterion method for genetic algorithms [41], it is possible to obtain a diversity
of outcomes from a neural network using losses that only ask for the network to achieve some
sufficient result rather than an optimal result. This technique is used in time agnostic prediction [38]
to make a network that attempts to predict future frames from a video sequence, but that essentially
has a choice as to which frame it will try to predict. This is done by allowing the network to not be
penalized for bad predictions in frames other than the one where the prediction is best—that is to
say, it is sufficient for the network to predict one frame well.

This type of sufficient criterion can be extended to the creation of a basic generative model where
the network converges to a diverse distribution of outputs. The basic structure of the idea is to take
a network that operates on some input N(x) and augment it by adding an input in the form of a
sample from a noise distribution g: N(x, g). If the network is being trained against some loss func-
tion L(N(x), y), then rather than minimizing the loss function directly, one can instead train against

~L ¼ min
g

L N x; gð Þ; yð Þ: (7)
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That is to say, the network is asked for the target value y to be within the support of the distribution
N(x, g), rather than just being asked to output the target value directly given x. For any values of g
that do not correspond to this best-case value, there is no direct optimization pressure even if the
values are very far from the target value. In practice, since one would only use a finite number of
samples from g, the network is encouraged not to “waste” values of g on values of y that never show
up. This has the consequence that, much as with the categorical cross-entropy, if there is some
uncertainty in y, the optimal solution is to output a distribution of values that cover what y could
conceivably be for any particular x, rather than to converge to a single point output.

Depending on the precise loss used for L, the relationship between p(N(x)) and p( y) can be
more complicated than just equality (Figure 2). If for example L(x, y) = |x − y|q, then for large
values q (and correspondingly, large numbers of samples M from g), p(N(x)) is driven to be-
come constant in areas where p( y) is greater than some threshold and zero elsewhere—when q is
large, then samples only need to be within a certain radius of the target value, and when M is large,
then low-probability events in p(N(x, g)) are mapped to higher effective probabilities in the
expectation: ~p(N ) = 1 − (1 − p(N(x, g)))M for the best value of N. On the other hand, as
q → 0, and as M becomes small (but still > 1), the model must more densely cover the peaks
of the distribution at the cost of the tails, because near misses count for less and less.

This sort of approach does not scale well to very high-dimensional output spaces, since the prob-
ability of finding a good value of g that causes the network to land close to the target y gets smaller
as the dimension of the output space increases. So we present it here mostly as an observation that
the same intuitions that can be used to drive diversity in genetic algorithms can also apply to driving
diversity in the outputs of neural networks.

2.3 Generative Adversarial Networks
The previous two techniques are used to train single networks that can stably converge to outputting
distributions of outcomes. However, the dynamics of training is fundamentally still convergent to-
wards an optimum. If divergent behavior is necessary for deeply exploratory open-endedness (some-
thing proposed as a role of mechanisms such as mutation), then the above techniques would not
suffice.

On the other hand, the method of GANs (Figure 3) implements a coevolutionary arms race,
which (in the biological equivalent at least) does produce divergent behavior. GANs consist of
two networks: a generator and a discriminator. The discriminator is trained to classify samples as

Figure 2. Generated distributions of networks trained with a minimum-of-M loss, of the form L(x, y) = |x − y|q. For large
M, q, the network converges not to the data distribution (dashed line), but rather to its support.
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either belonging to the data distribution or being from the generator, while the generator attempts to
produce samples that can fool the discriminator. Overall, the method is motivated by the observa-
tion that the Nash equilibrium of the competitive dynamics should be that the distribution of the
generatorʼs output is exactly matched to the data distribution. However, since the two networks are
trained with opposing loss functions, there is no strong guarantee that the overall dynamics will
converge directly to that equilibrium. In fact, a recent systematic study across GAN variations shows
that even when the generated samples appear to have converged, in reality the network weights may
be exhibiting behavior such as limit cycles in the vicinity of the Nash equilibrium [48]. This suggests
an analogy to evolutionary game theory, in which the instability of Nash equilibria and possibility of
limit cycles are also important considerations.

Conceptually, GANs get closer to the idea of open-endedness than the other methods in the
sense that they can operate in a much higher-dimensional space than can be exhaustively mapped.
Autoregressive models try to capture those high-dimensional structures by explicitly factorizing the
space into independent distributions, whereas using a minimum loss over multiple samples requires
the samples to span the space meaningfully in order to capture details. In a GAN, the discriminator
network effectively searches for an interesting direction—defined in the sense that the generator has
yet to correctly capture something about the data in that direction. Then, following that, the gen-
erator exploits the discovered direction and fixes that aspect of the distribution. Since these “direc-
tions” are constructed from deep representations in the discriminator, they need not correspond
directly to microscopic degrees of freedom or details, but can instead capture higher-level abstrac-
tions about the data and its internal relationships. Thereby, GANs can capture things such as a sense
of photorealism as meaning “perceptually indistinguishable from reality” rather than literally having
the same pixel values as a particular photo.

When in a stable training parameter range, this iterative procedure of finding some inconsistency
and fixing it ends up capturing all such inconsistencies that can be detected. Thus, even though the
objective function is relatively simple, the networks can in principle capture as much diversity as exists
within their environment (e.g., the training data). In practice, however, GANs exhibit a phenomenon
known as mode collapse, in which the generator cannot stably maintain coverage over the entire dis-
tribution, but rather jumps from place to place, modeling a succession of subparts of the data.

One explanation for mode collapse is that, while the Nash equilibrium between the networks
should contain the full entropy of the data distribution, if one were to hold the discriminator fixed
and trained the generator to completion, for any simple scalar loss function this should always result
in only a single best sample being generated [29, 49]. In the actual joint training, the generator never
collapses completely to a single sample, on account of the movement of the discriminator, but the
general pressure is to converge on that point. However, if, rather than training the generator to fool
the current discriminator, the generator were trained to fool a converged future discriminator (that is
to say, if the generator were trained to make it hard for the discriminator to win), then the optimal
solutions would not be pure samples, but instead distributions. This method, referred to as unrolled
GANs [49], is much more stable against mode collapse.

Looking at this strategy, we see that there is a commonality with the minimum-over-set losses.
When using a set of samples and optimizing only against the best case from the set, the optimum

Figure 3. Sketch of the GAN architecture. The generator produces fake samples and is rewarded for fooling the dis-
criminator. The discriminator classifies samples as real or fake, and is rewarded for doing so correctly.
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solutions become distributions rather than pure samples, because it becomes advantageous to gen-
erate bad samples that have some chance of being good samples under some circumstance. With the
unrolled GAN, rather than taking the best sample for a fixed context out of a random set of samples
and optimizing it further, one is essentially generating a fixed set of samples but then finding the
worst possible single context (by considering a future adapted discriminator ) across that set. As a
result, not only should the generator hedge its bets (which it effectively does anyhow with regard to
stability at least), but the loss function that the generator optimizes directly takes this into account.

In terms of evolutionary dynamics, this suggests a potential interaction between minimal-criterion-
based fitnesses and the Baldwin effect [3, 22]. Much like these neural networks, organisms with
methods of within-lifetime adaptation can express a diverse set of phenotypes even if genetically
identical. While a minimal criterion (such as different organisms having different bottleneck re-
sources in a system with multiple niches) supports a distribution of genomes, even when evolution-
ary pressures such as competitive exclusion would prevent genetic diversity from being stable,
within-lifetime mechanisms of adaptation can take over and provide that diversity directly in the
phenotype.

2.4 Bounded Diversity of Generative Models
Ultimately, generative models as used in the machine learning community still have effectively
bounded diversity, as their objective is to match some particular fixed distribution of data (although,
if that data comes from the natural world, the diversity may be correspondingly high). This is a place
where the specific goal of producing a numerical model that is capable of generating or predicting
something concrete about the world is likely to be creating a bit of a blind spot. An exception to this
is perhaps in the field of reinforcement learning, where it is often necessary to make agents to ex-
plore the space of the possible in a given environment.

The method of density-estimation-based curiosity [55] implements a kind of exploration algo-
rithm based on an underlying generative model. Specifically, an autoregressive generative model is
learned for the states that an agent visits, and then behaviors that lead to low-density regions of the
probability distribution are reinforced. Much like novelty search [42], this leads to agent behaviors
that try to extract a maximum variety of outcomes from the environment. Now, of course, rather
than the diversity of the method being bounded by the data, it is bounded by the diversity of sensor
values that the agentʼs particular environment can give rise to, which is generally strongly bounded in
the sorts of games that are used to test this kind of method, as the game itself has no way of varying.

Multi-player games, on the other hand, can give rise to emergent complexities and variations due
to the need to not just adapt to the rules, but also adapt to the strategies of the other player. We will
discuss this more in the following section, specifically with regard to the idea of self-play between
neural networks and copies of themselves, a technique that exploits the sustained pressure produced
by competition to explore new strategies in order to accelerate learning.

The intersection between these ideas may provide a fertile ground for expanding the scope of
meaningful, open-ended diversity generation. Rather than training a generative model against the
world, generative models could be connected together and trained to produce transforms of each
otherʼs outputs related by what amount to rules for interaction (or rules of a game that they share).
The adaptation of GANs to modeling populations of agents playing the prisonerʼs dilemma and
other basic games [51] is a step in this direction.

3 Complexity and Scaling

Indefinite diversity production covers one idea of open-endedness, but there are many examples of
trivial processes that produce output distributions of arbitrarily high entropy. For example, neutral
point mutations of an infinitely long noncoding section of a genome might end up covering a space
of infinite potential diversity, but such diversity ultimately has no relation with the organismʼs be-
haviors or with the context in which it exists—it is nonfunctional. It is also possible to imagine
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spaces that are effectively infinite in their capacity to express functional diversity, but where the
choices as to what particular thing to express are essentially arbitrary. An example of this is the
naming game [68] in linguistics, where for N concepts and potential words, there are N ! possible
languages that map a single word to a single concept and thus would be functionally equivalent to
each other.

This leads to the idea that not only should an open-ended system produce a diversity of possible
outcomes, but those outcomes should be progressing in some direction such that the newest out-
comes depend on and extend what was produced in the past, in analogy to things such as the de-
velopment of technology. This can be compared to our argument in the previous section, where we
argued that diversity can be important as a way of providing a memory of previously discovered
solutions or behaviors.

This idea of directionality is often summarized as the idea that things produced by the system
should grow increasingly complex over time, where the notion of complexity could have a variety of
different concrete interpretations—Kolmogorov complexity [40], information content with respect
to the world or other agents, interdependence of components with respect to function, and so on.
Very broadly, a common element to these measures is that the particular details of things should
matter: If one shrunk an organismʼs genome to the size of the Kolmogorov complexity of its be-
haviors, then not one change could be made without destroying the behaviors; if one did the same
with respect to the mutual information instead, then every change made would be a loss of some
potential for the organismʼs behaviors to relate to its environment; if one of a set of interdependent
components is altered, it influences the function of all the others; and so on.

It is easy to find systems in which such quantities are driven by selection pressures to increase,
but this is separate from the question of what is necessary for them to increase without bound.
Effects that are insignificant at finite scale may become dominant when some aspect of the system
is diverging towards infinity. Thus, it may often be necessary for certain effects or considerations to
have exactly zero effect, rather than just a sufficiently small effect, in order to preserve the diver-
gence. Resonance in oscillators is an example of this, where even an infinitesimally small amount of
dissipation in the system becomes the dominant effect determining the shape of the resonance as
well as the peak amplitude that will be observed under a given energy input. Similarly, in the Ising
modelʼs critical phase transition, any small nonzero external magnetic field is sufficient to detune the
system from criticality, and as a result becomes a dominant effect in controlling the cutoff of the
divergence of the specific heat or magnetic susceptibility around the transition.

With respect to an open-ended increase in complexity, the sorts of terms that might detune a
divergence are scaling costs or diminishing returns such that, as the complexity of the system in-
creases, either the cost of maintaining that complexity becomes divergently large (compared to other
forces on the system), or the forces pushing the complexity to increase become divergently small
(compared to fixed forces preferring a particular complexity scale). Such forces might include selec-
tion pressures, but they can also include mutation biases or the entropic cost of maintaining long
sequences, for example. An example of this would be that when there is some fixed external task
that in part determines an organismʼs fitness, then there is also likely a particular associated charac-
teristic complexity scale beyond which the strength of selection pressures associated with improving
that fitness via increasing the complexity will either decay due to diminishing returns or even reverse.
If there is even a fixed-strength, extremely weak pressure to decrease complexity present in the
system, that pressure will win in the infinite limit against a decaying pressure towards increasing
complexity (Figure 4(a)).

Instead, in order to preserve pressure towards complexity increases, it may be necessary for any
selective benefits to be relative to the complexity scale of the current population, rather than cor-
responding to an absolute, fixed landscape. Coevolutionary dynamics are one way of providing this
sort of effect. In essence, a coevolutionary system produces a (potentially unending) sequence of
successive tasks. Depending on the structure of the interactions, this may indefinitely provide a
consistent local selective benefit for increasing in complexity relative to the other organisms in
the system. An example of this is runaway selection effects in Red Queen dynamics. For instance,
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plants competing for sunlight will receive a selective advantage only if they manage to escape each
otherʼs shade, regardless of the particular height at which that is achieved. So by making the dom-
inant pressures relative rather than absolute, those pressures can be made to persist even as the
complexity of evolved structures diverges.

Even if the pressure towards increasing complexity does not decay, a growing pressure or cost
associated with maintaining an increasing repertoire of information could also lead to saturation of
the complexity that a given system achieves (Figure 4(b)). Such a cost could arise from the need to
implement repair mechanisms to reduce the effective mutation rate, or as an overall reduction in
fitness associated with an increase in the number of potential deleterious mutations that could occur
in an organismʼs offspring. Phenomena such as Spiegelmanʼs monster [65] and the survival of the
flattest [75] reflect these considerations in the form of an intrinsic evolutionary bias towards reduc-
ing genetic complexity as much as possible while satisfying the constraint of being able to survive
and replicate. These phenomena have also been observed in artificial systems of replicating programs
such as Tierra [60], in which the addition of normalization by execution time was needed to avoid an
implicit bias towards shorter replicators. In general, it seems that complexity fundamentally comes at
some cost, be it in fitness or in robustness. In order for complexity to increase without bound, there
must be ways in which that cost is kept in check as complexity increases, in which the net benefit of

Figure 4. (a) Complexity peaks because of diminishing returns on pressure to increase, versus static resisting pressure.
(b) Complexity peaks because of scaling pressure to decrease versus consistent static pressure to increase. (c) Pressure
to increase complexity grows asymptotically faster than pressure to decrease, leading to increase in complexity.
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increasing complexity is kept above the level of the increasing cost, or in which reductions in com-
plexity are made nonviable (“the complexity ratchet”) [43].

The degree to which systems can attain arbitrarily high complexity is then bounded by the degree
to which such mechanisms can scale without reaching a hard cutoff. Eigen showed that under a
particular rate of genetic drift, there is a maximum amount of information that can be maintained
in a given genome at a particular mutation rate [74]. This results in the so-called Eigen paradox, where
the amount of information needed to code for genetic repair mechanisms that effectively lower the
mutation rate is greater than can be sustained without already having those mechanisms in place. In
order for the amount of information in an organism to diverge to infinity (that is to say, to actually
be able to continue to increase in complexity without ever stopping), the effective rate of point
mutations must decrease to zero. In the context of characteristic scales suppressing criticality, we
can understand this by observing that point mutation has a characteristic scale in the form of the unit
of information storage that is being mutated. When the sorts of structures that encode the function
of an organism become asymptotically larger than the point mutation scale, then there is a commen-
surate diverging entropy cost for maintaining those structures, which acts opposite to selection
pressure.

If on the other hand the mechanisms of evolutionary drift are also scale-invariant or are coupled
to the organismʼs complexity, then this can avoid the existence of a cutoff scale. For example, if
increases in complexity allow proportionately better repair of mutations, so that the effective mu-
tation rate per offspring that can be achieved decreases at least inverse linearly with the amount of
genetic information stored, then the system can at least in principle indefinitely stay ahead of the
error threshold. Other forms of genetic variation, such as horizontal gene transfer, lack a character-
istic scale and therefore can sustain indefinite increases in complexity.

In evolutionary systems, we previously showed that it was possible to drive various complexity
metrics to increase indefinitely by way of a general recipe of suppressing the existence of character-
istic scales in the evolutionary dynamics, and then applying relative selection pressures. This was
applied to three systems. In one, we used competitive predator-prey dynamics with an attack-
and-defense motif, where attackers would need to find some pattern not covered by the defenders
in order to successfully eat them [32]. This caused the fitness landscape to be entirely constructed
out of comparison with the rest of the ecology, with no “fixed” terms associated with particular
complexity scales. Furthermore, point mutations were augmented (and asymptotically replaced)
by a scale-free gene duplication dynamic. This recipe was extended to a symbiotic version of the
same system, where organisms would elect to consume compounds from their neighborhood and
would emit byproducts that would require a slightly more complex process to subsequently metab-
olize [33]. While the competitive system produced dynamics much like a traveling wave in sequence
complexity (with both attackers and defenders peaked near the maximum complexity achieved by
the ecosystem so far ), the symbiotic system produced a diverse distribution of organisms spanning
an increasing range of trophic levels. We also investigated a system of plants learning to encode 3D
morphologies in order to compete for sunlight, and found similar results to those in the competitive
predator-prey system [33]. In particular, for the predator-prey system we observed that the increase
in complexity would saturate at levels dependent on the residual point mutation rate and system size,
in a fashion consistent with the existence of a critical point at infinite size, zero point mutation rate,
and infinite organism coding length (Figure 5).

The constraint of suppressing the existence of characteristic scales is a strict one, as it limits
things to systems based on rules that are sufficiently self-similar that the scaling behavior of the
system can be guaranteed. It is not clear that, for example, the space of arbitrary programs should
have such convenient self-similarity properties. Thus, when something like Tierra demonstrates an
asymptotically saturated complexity, it is difficult to know whether that is because of the scales
introduced by mutation operators, by the fitness function, by some implicit property of the envi-
ronmental dynamics, or by some structural properties of programs represented in that language.

This makes neural networks an interesting space to work in with respect to open-endedness of
complexity. Many classes of neural networks have been shown to be universal function approximators
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[18, 37], in the sense that there is always some finite-size neural network that can approximate a given
function to an arbitrarily small error rate on a particular set of data. Furthermore, it has been observed
that neural networks are able to perfectly fit structureless noise patterns given sufficient training time—
meaning that not only are arbitrary functions contained within the domain of their expressiveness, but
that the training process itself can actually successfully find such functions. This gives us something
like a space of programs where apparently the encoding of such programs does have the right sort of
invariances so that arbitrarily complex things are not a priori excluded from discovery.

3.1 Scaling in Neural Networks
First we will examine a body of empirical evidence as to the scaling properties of neural networks
that has emerged from commercial applications over the last few years. Neural networks have now
been trained on image classification, speech recognition, and natural-language modeling and trans-
lation across many orders of magnitude of available data and network size, and appear to demon-
strate consistent scaling of performance over that range. The primary limiting factor is that in order
for performance to continue to grow with additional data, the network size must also be increased,
strongly suggesting that this is driven by the networkʼs ability to include more information rather
than just the optimization of model parameters becoming more precise.

In the image domain, scaling experiments on a data set consisting of 3 × 108 training images and
18,291 categories (with multiple categories per image) [69] showed consistent scaling laws of network
performance with respect to data. The mean average precision, which measures the overlap between
the predicted categories and the actual category list, was observed to increase logarithmically as the
amount of training data was increased over the range between 107 and 3 × 108 examples, so long as
the network size was sufficiently large (Figure 6a). More recently, a study [46] on the effects of
network pretraining made use of a 3.5 × 109-image Instagram data set with noisy labels, in order
to pretrain a network before fine-tuning and testing on the standard ImageNet benchmark [19]. In
this case, they observed that pretraining a sufficiently large network produced consistent logarithmic
improvements in performance with respect to data quantity over the range from 107 to 3 × 109

images, so long as the target task was sufficiently difficult.
Since accuracy is a bounded measure, it may be more appropriate to look at the decrease of

error than at the increase of accuracy. Power-law scalings with respect to data size have been
observed from 3 × 104 to 5 × 105 images on ImageNet data, from 8 to 2,048 hours in speech data,
and over a range of roughly two orders of magnitude in various language modeling and translation

Figure 5. Reproduction of Figure 3 of [32]. This shows the scaling of organism complexity with respect to system size (S)
and point mutation rate (r) for a predator-prey system. The inset depicts evidence for the existence of a critical point
associated with this data, in the form of an observed data collapse when the data is plotted against combined power-law
functions of the mutation rate, system size, and complexity.
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tasks [35]—corresponding figures reproduced in (Figure 6(b), (c), and (d)). These power-law scalings
come with commensurate power-law increases in network size necessary to avoid saturation with re-
spect to the amount of data, and range from N −0.3 scalings in the image and speech recognition
domains to a N −0.066 scaling in word-level language modeling.

These results seem to show that as long as the external context of the network (that is to say, the
tasks and data on which it is trained) has additional structure to be gleaned and there is sufficient data
available, even when there are diminishing returns, asymptotically infinite neural networks trained using
stochastic gradient descent and backpropagation are able to learn and incorporate that information
successfully. So, empirically at least, it appears that the underlying learning mechanisms for training
neural networks do not suffer from a characteristic information retention scale that would force
saturation if they were otherwise driven towards infinite complexity. At the same time, these are all
cases in which the driver for complexity corresponds to an external process, which must presumably
already possess as much complexity as the corresponding network that would be trained to model it.

3.2 Complexity of Neural Networks
To better understand these scaling results, we can consider a formal sense of “complexity” with
respect to the capacity of statistical learning to differentiate between different models used to com-
pare a wide variety of machine learning methods. The basic idea is that if a model is sufficiently
expressive to fit arbitrary data, then the fact that the model succeeded or failed to fit a particular
data set provides no information as to whether that model describes the true underlying process that

Figure 6. (a) A replot of the data from Figure 4 (left) of [69], showing logarithmic scaling of network performance with
number of training examples. (b) Figure 1 (left) from [35], showing power-law scaling of error with data in a translation
task. (c) Figure 2 (left) from [35], showing power-law scaling of error with data in a language modeling task. (d) Figure 5
(left) from [35], showing power-law scaling of error with data in a speech recognition task.
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generated the data, versus just memorizing the particular data samples as given. One such measure
of model expressivity is the Vapnik-Chervonenkis dimension (VC dimension) [72], which is the
number of data points that are guaranteed to be able to be “shattered” by choosing optimal values
of the model parameters.

Within traditional machine learning techniques, the VC dimension is used as follows: Given a
constrained model family that contains a “true” model that obtains a minimum error on the under-
lying process that generates the data, the VC dimension puts a bound on how badly a given model
will generalize to new samples. This classical result essentially says that if a model is better at fitting
the data, it will always be worse at generalization. However, empirically it seems this is not neces-
sarily true for large neural networks. In this section we briefly review this paradox, which is not yet
well understood and may provide insights into the kinds of system that can learn in an open-ended
manner.

The asymptotic scaling means essentially that a number of observations linear in the VC dimen-
sion of a model family are needed in order to maintain a constant generalization bound. So whereas
the case of point mutations required us to reduce the mutation rate asymptotically to zero to obtain
arbitrary complexity, there also appears to be a limit where the number of observations needed to
establish a “meaningful” complexity (e.g., one that is not just a product of happenstance) must di-
verge to infinity as the desired complexity diverges to infinity (which, in terms of this sort of bound,
should conceivably apply for both evolutionary processes and machine learning processes, as it does
not distinguish between ways of selecting the model).

When the model space to be considered is much larger than the data which is available, the stan-
dard approach is to modify the objective function in order to “regularize” the model space and
thereby prevent overfitting. The idea is that rather than treating all points in the model space as
equally good, one can choose to rank them in some order (presumably in order of complexity),
and then favor low-complexity solutions over higher-complexity solutions that are equally good.
Or more flexibly, one can assign a cost to complexity and add it to the objective function. One
way that this is done in the case of linear models is to assign a cost to model weights being large,
corresponding to an inductive bias that the functions one is trying to learn should be smooth. A
further constraint might be that the number of nonzero coefficients should be small. These are,
respectively, L2 and L1 regularization. It turns out that L1 regularization can reduce the amount
of data needed from linear in the parameter count to being only logarithmic [54].

Neural networks generally have far more parameters than there is data to train them. Further-
more, there are tight bounds that tie the parameter count to the VC dimension [5]. Specifically, the
VC dimension dvc is bounded by

c1WL log W=Lð Þ≤ dvc ≤ c2W �L log 2Uð Þ (8)

where W is the number of parameters, L is the network depth, �L is the average network depth
weighted by parameter count, and U is the number of nonlinear units and is proportional to W.
Modern image classification neural networks have parameter counts in the hundreds of millions,
but are generally trained on a standard data set (ImageNet), which has only 1 million images.

Thus, it appears that neural networks operate in a regime that would require strong regularization
in order to obtain any guarantees that the relations they learn correspond to actual systematic struc-
tures underlying the distributions of different types of natural images. To this end, L1 and L2 reg-
ularization, along with a number of stochastic regularization methods such as Dropout [66], were
used extensively with respect to 5 × 104 image data sets such as MNIST and CIFAR to obtain state-
of-the-art performance. However, these methods have become less and less common for large-scale
data even on the level of ImageNet, much less the 3 × 108- or 3.5 × 109-image data sets. If we think
about this from the perspective of open-endedness requiring a suppression of characteristic scales,
this makes sense, because any regularization term added to the objective function that penalized
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complexity would establish some characteristic scale beyond which the reward for putting more
information into the network would be less than the corresponding penalty being assigned.

Curiously, even without explicit regularization, neural networks seem to overfit far less than their
VC dimension would suggest that they could. Furthermore, there is evidence that increasing the
parameter count can actually increase generalization performance in practice [53]. While this suggests
that the VC dimension generalization bound is simply not a tight bound on the learning process used
to train neural networks, it has been observed that when the labels are randomized (destroying any
systematic relationship between the inputs and targets of prediction), networks can in fact still learn
to memorize the mapping between individual images and those arbitrary labels [77].

It appears that what is going on is a form of regularization that is inherent in the training process
itself [53]. Unlike regularization applied by modifying the objective function, this implicit regularization
does not necessarily sacrifice the ability to represent or even find arbitrarily high-complexity states (as
seen in the observation that neural networks can ultimately just memorize their training data if there are
no other patterns to find). But rather, it must take the form of a preference in the order in which
solutions are explored. Thus, if a solution with zero training error and good generalization performance
exists, it has an increased chance of being favored over a solution with zero training error and bad
generalization performance, so long as the inductive bias associated with the training process has some
structural commonality with the type of problems that exist out in the world.

This gives us a self-tuning property that may be advantageous in looking for systems whose com-
plexity increases due to internal process rather than by being driven by an external schedule. That is
to say, for an organism embodied within a system and implementing such a learning mechanism,
both the depth of the model being searched and the amount of data available to condition the model
would scale together in time. As long as more data (e.g., interactions with the world) are constantly
being added, then the generalizable complexity bound and also the depth into the parameter space
searched by stochastic gradient descent can both scale in parallel.

3.3 Generative Complexity
There is a continuing debate in ALife as to whether the complexity of biological systems arises pri-
marily from a complexifying process inherent in evolution itself, or is due to nascent complexity and
richness that exist within the environment life finds itself in (or, more abstractly, in the laws of
chemistry and physics) [59]. That is to say, one hypothesis for why artificial life systems exhibit
bounded complexity is that hand-constructed artificial systems tend to be much cleaner than what
youʼd find in a random spot on Earth—be it due to fluctuations such as seasons, rare events, trans-
port from surrounding regions, heterogeneity of composition, or other causes. Similarly, the sorts of
rules constructed in toy models to try out ideas tend to have less inherent variation than one would
observe in looking at things such as real chemical reaction networks. On the other hand, there is an
argument that even if such things have a great degree of richness and might help drive the com-
plexity of life, that richness had to come from somewhere fundamental—ultimately chemistry de-
rives from quantum mechanics, which does not possess a separate fundamental constant for each
chemical species or chemical reaction in the network, and similarly the richness of a real environ-
ment derives from fundamentally simpler underlying phenomena such as chaos. The previous ex-
amples of images, sounds, and language are all cases with external data sets. We have shown that
neural networks can adapt to complexity provided to them over a range of scales, sometimes in a
coevolutionary manner, but we have not yet looked at whether neural networks are suitable vehicles
for generating complexity increases on their own due to their internal dynamics.

However, results involving de novo self-generated complexity are starting to appear in the machine
learning literature. In particular, recent approaches involving reinforcement learning make heavy use
of the idea that one can bootstrap sophisticated strategies by having a network play games against
copies of itself. In cases where the rules of the game are known exactly and the game state is fully
visible, the current leading method is expert iteration [2]. The core idea revolves around the
construction of an operator that takes a probabilistic gameplay policy as input and returns a policy
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that is at least as good (but is capable of being better). Because the game rules are known (even if
stochastic) and all information is available to all players, it is possible to use strong theoretical guar-
antees from Monte Carlo tree search [12] about bounded regret in order to produce such an operator.
Given such a policy improvement operator, the training method is simply to train each agent to imitate
its better self. Over a comparatively short training period of months (versus the thousands of years that
humanity has studied the game), this method has produced agents that have beaten top human players
at Go [63, 64] and similarly demonstrates better performance than top shogi and chess engines. So at
least within the scope of strategies implied by the (fixed) rules of such games, networks coupled with
Monte Carlo tree search are capable of discovering more complexity than they are directly provided.

In partially observable games, as well as games where the rules are not made available to the net-
work, work is ongoing to determine the degree to which reinforcement or other approaches can dis-
cover similar levels of nested complexity. Various strategies have been discovered in the context of
simulated physical competitive tasks such as wrestling [4]. Projects to map reinforcement learning into
real-time strategy game environments such as Starcraft and DOTA 2 are ongoing (with a recent ex-
hibition match by a set of agents produced by OpenAI appearing to approach the level of professional
play, though the details are as yet unpublished at the time of writing). So even without the underlying
conditions for using expert iteration, it appears that some degree of complexity can be discovered.

In parallel with the contrast between internally and externally prompted complexification, there are
a number of approaches to formulate intrinsic (as opposed to externally imposed) motivation functions.
These comprise concepts such as minimization of surprise [27], maximization of empowerment [39],
and curiosity [8, 62]. It is interesting to observe that, much like how many artificial evolutionary sys-
tems seem as though they could go open-ended but instead saturate around some fixed-complexity set
of solutions, a recurring challenge behind formulating intrinsic motivations is the occurrence of a so-
called dark-room problem [45], in which there is some trivial way in which an agent following that mo-
tivation can globally maximize it without significant effort or engagement with the actual dynamics of
the environment. An example of this is that an agent that attempts to minimize its surprisal could
conceivably learn about the world and make an advanced predictive model, but instead it would be
simpler for it to find ways to turn off its senses and thereby avoid all sources of potential surprise.

Dark-room problems and their corresponding solutions seem to share some commonality with
the issues surrounding convergence of evolutionary processes to a finite-complexity fixed point ver-
sus (coevolutionary) dynamics, which can in some cases lead to open-ended arms races. It has been
observed that intrinsic motivations can be grouped into homeostatic and heterostatic cases—where
homeostatic motivations admit a fixed point stationary behavior that globally optimizes the motiva-
tion function, while heterostatic ones have no stable fixed points [56]. In homeostatic cases, the
solution to dark-room problems is to impose constraints that are nontrivial to satisfy, such that
any complex structure that emerges takes its shape from the interaction between the constraint
and the motivation function. In the context of surprise minimization, this could take the form of
imposing a prior belief that a given outcome will be achieved. On the other hand, heterostatic in-
trinsic motivations make use of internal tensions to prevent any single policy or strategy from being
stable. A curiosity-driven agent, for example, might simultaneously be trying to predict something
accurately and be trying to take actions that make its own predictive models fail [13, 57, 76]. In
comparison, evolutionary dynamics where fitness is a fixed function of the individual genotype of
each organism on its own converge to a stationary distribution around optima (essentially homeo-
static), whereas coevolutionary dynamics are capable of expressing nonstationary dynamical out-
comes such as limitcycles, chaotic behavior, or traveling-wave-type solutions (heterostatic) and as
a result are more able to avoid getting stuck in ways that inhibit open-endedness.

4 Shifts in Individuality

The things we have mentioned still constitute examples of fixed games, so it is likely that there is
some upper bound on the degree of useful complexity that can ever be discovered even by the best
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possible population of Go players or Starcraft players. Furthermore, within the context of a fixed
framework such as Go or Starcraft, there is no way for the type of emergent complexity to extend to
modes of interaction far beyond the game itself. A reinforcement learning agent trained on Starcraft
does not possess the capacity to, for example, decide to take up knitting.

On the other hand, real biological systems often breach their bounds in surprising ways, seem-
ingly changing the rules of the game. These events happen at the small scale, such as the creation
of new niches or cultivation of aspects of the environment, but also at the scale of redefining the
unit of individuality in a succession of major transitions throughout the history of life on Earth
[47]. For example, we can contrast the sort of results we would expect if we began from a hard
constraint of modeling life as a well-mixed chemical reaction network, versus what actually ended
up happening. In a well-mixed chemical system, environmental conditions such as temperature
and pH will dominate what chemistry is possible, and so while one might have autocatalytic sets
or hypercycles [21], they would be at the mercy of that external driver. By making use of mem-
branes, a physical process depending on the spatial arrangement of molecules (and so invisible in a
description of the world as a well-mixed one-pot reactor ), organisms can achieve homeostasis and
partially decouple the internal chemical environment from the external one. When reactions being
always on or always off would put strong limits on the stability of cycles (such as in the Eigen
hypercycle case [21]), enzymes, gene expression, and other things can be invented in order to again
change the assumptions and effective rules of the game. When limits of what chemistry can take
place in a shared space arise, grouping, symbiosis, or parasitism between individuals can lead to
colonies and eventually multicellularity, changing the fundamental unit of individuality in the
system.

If ultimately we want an open-endedness of that kind rather than simply open-endedness driven
by the complexity of a fixed world, we need to consider both ways in which the rules of the game
can themselves be altered, and ways in which agents can modify their effective boundaries and the
way in which their identities are encoded and expressed. This is quite a lot to ask for in any artificial
system, but one approach has been to try to resolve the underlying operations into physically em-
bodied processes. That is to say, in something like Tierra, replication is not assumed as a rule of the
system, but rather must be accomplished via emergence from lower-level pieces—meaning that the
nature of replication itself could change.

In evolution, there is a tension between scales in that each self-replicating component on its own
might evolve in such a way as to increase its local fitness at the expense of the fitness of the
macrostructure of which it is a part. Mechanisms and forms of biological order exist that suppress
this tendency—the use of a bottleneck germ cell to mediate replication of the whole, programmed
cell death, or the like. In essence, there must be some way in which information about the structure
of the entire organism at the higher scale propagates and influences the behavior of each individual
component (through having shared genes, through top-down regulation, through sharing common
bottleneck points in time, etc.).

When it comes to neural networks, we can think of the lower-level pieces as being individual
parameters or mathematical operations. The computation executed by a network is composed by
those contributions working together to construct some overall function, and the “individual” could
be considered either to be each of those parameters, or the network as a whole. In that sense, there
is already some degree to which the behavior of the network as a cognitive system is dependent on it
crossing a boundary between the behavior of each component and the interface between the whole
and whatever task it is trained on. In backpropagation-based gradient descent, this is obtained by
analytically computing the derivative of the global behavior (as defined through the lens of the ob-
jective function) with respect to each parameter—in effect, providing each parameter a summary
statistic representing what the downstream degrees of freedom need in order to make the overall
behavior change in a certain targeted way. Although this summary statistic contains global informa-
tion about the structure of the network as a whole, it can be computed through a series of entirely
local operations (which amount to repeated applications of the chain rule). As a result, backpro-
pagation fills the role of evolutionary mechanisms such as group selection, in that it provides the
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necessary coupling between scales and causes the individual parameters to behave collectively so
as to produce a coherent overall response to the external task.

In practice, neural architectures are hand-specified and fixed with respect to a particular problem
and course of training. This means that, while the framework of a backpropagation-based neural
network can include many different forms of macro-scale “individual,” most work concerns itself
with a particular form of individual rather than transitions between them. There are some excep-
tions, however: Methods such as NEAT [67] use evolutionary methods to allow network architec-
tures to adapt in response to a problem, neural architecture search [78] uses reinforcement learning
to learn a probabilistic policy for constructing new architectures, and adaptive neural trees [70] re-
cursively and dynamically generate a neural network architecture on the fly as “they” learn.

We can also consider cases in which the logical structure of a computation changes dynamically
even if the architecture is fixed. Some examples of this are neural Turing machines [30, 31] and
memory-augmented neural networks [61]. In these cases, the networkʼs input is arbitrarily extensible,
either in the form of an input sequence or in the form of a preloaded external memory whose size
can vary. An attention mechanism is used in order to force the network to (internally), decide upon
an execution path and access pattern over the data available to it. This means that, even using the
same fixed architecture for the network, one could have computations of varying length and extent
over the data.

The above methods might be thought of as the network changing and diversifying its own in-
terior structure, essentially redefining the sense of the individual “inwards.” However, the actual
motivation and task are still held constant and fixed—all that happens is that the system organizes
in different ways to respond to that pressure. On the other hand, if we want a situation in which the
rules of the game change fundamentally, the objective function or pressures must also be part of
those dynamics. We can look at something like the GAN architecture as having an aspect of that—
by having one network provide a supervision signal to another, the generatorʼs objective becomes a
dynamic feature of the system as a whole rather than a fixed external thing. Work has been done on
training populations of interacting networks in cooperation games, such as [26], which uses differ-
entiable communication channels to backpropagate supervision signals between a pair of interacting
agents playing a coordination game, and [52], which extends that to the case of agents learning to
develop a shared, compositional language. From the point of view of the backpropagation pass,
these multi-agent setups just correspond to something that is, instantaneously, a single network that
just happens to have a dynamically varying architecture.

One could go even further and allow the networks to determine on their own how to associate
with one another. While different communication topologies are on the face of it a binary choice, the
same sort of continuous extension of that which is provided by attention mechanisms (such as [73])
can in principle render the choice of which subnetwork to receive from into a differentiable (and
therefore backpropagation-compatible) function. The idea in this case would be that each agent and
associated subnetwork represents the others around it as a vector by observing their behavior (as in
[58]), and then uses those vectors in order to choose which to associate with or pull information
from. This would enable a neural-network-based system that could simultaneously represent dis-
sociated individuals, collectives, and the cognitive process by which a transition between them occurs.
In such a case, the supervision signal might be externally defined at the level of individual sub-
networks, but when those signals are incompatible with each other (as in a GAN), the system as
a whole can behave in a way that emerges from the interaction of those individual motivations with
the learned associations between subgroups within the population—in essence, giving rise to new
emergent, population-level motivations.

The above approaches allow the internal and external arrangements of a neural-network-based
system to become dynamic, but the learning algorithm itself is still fixed. However, there are a num-
ber of ways in which this constraint may be relaxed. The concept of neuromodulation captures the ideas
that the parameters of adaptation or learning may, themselves, adapt on a slower time scale. This has
been used to learn control schemes for the learning rate on reinforcement learning tasks [17]. Be-
yond just tuning the parameters of a fixed learning algorithm, the entirety of the learning algorithm
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may be made subject to adaptation. These approaches fall under the general heading of “learning to
learn” [1, 11, 36], where the functional form of the weight updates of a network is discovered via
some other optimization algorithm—this can be a genetic algorithm, reinforcement learning, or even
backpropagation through the learning algorithm itself. A recent example of this idea uses back-
propagation through the gradient descent procedure to train networks to be able to quickly learn
when presented with new tasks, enabling one-shot learning in classification and robotics control task
domains [24, 25]. There is also recent work looking at the possibility of training networks to train
each other (such as by learning curricula [50] or data augmentation strategies [16]). If differentiable
communication can be thought of as allowing networks to alter the boundary of individuality over
space, these meta-learning techniques in some sense allow the alteration of the boundary of individ-
uality over (learning) time scales.

Ultimately, while we cannot yet answer the question of what it would take to achieve an open-
ended succession of multiple major transitions as biological evolution appears to have done, there
are a number of techniques that could be used within the framework of machine learning and neural
networks to probe the possibility of emergent shifts in the definition of the individual. The inherent
recursivity of a backpropagation pass seems to lend itself towards being able to fluidly vary the scale
on which motivations are compartmentalized while retaining the same basic underlying information.
Thus, we hope to encourage researchers in artificial life to explore both ways in which this may be
taken advantage of, and ways in which these structures can be understood in light of insights gar-
nered from working with evolutionary analogues.

5 Conclusions

Understanding the open-ended complexity of the natural world is one of the greatest long-standing
problems in evolutionary biology, and emulating such complexity is one of the greatest open chal-
lenges in artificial life. While most would agree that a complete understanding is yet to come, sub-
stantial progress has been made through evolutionary simulations. At the same time, the field of
machine learning is in an era of rapid progress, with neural networks reaching levels of functional
complexity that were undreamed of only a decade ago. We have argued that several emerging ideas
and techniques from that field can be brought to bear on questions about open-ended evolution and,
vice versa, that ideas about coevolutionary complexity are becoming increasingly relevant within
machine learning itself.

We have reviewed a number of topics relating to the emerging crossover between these two
fields, focusing in particular on the issues of diversity and scaling. We believe that this convergence
of ideas will provide substantial new insights to both fields in the years to come.
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